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INTEGRO-DIFFERENTIAL EQUATIONS OF THE 
PROBLEM OF THE SCATTERING OF ELASTIC 

WAVES BY A PLANE THIN-WALLED INCLUSION 
OF LARGE STIFFNESSt 

S. I. G O R B A L '  a n d  V. E Y E M E T S  

L'vov 

(Received 30 March 1994) 

Integro-differential equations of  the problem of the scattering of elastic waves by a thin-walled plane inclusion of large stiffness 
are presented on the assumption that the scatterer and the matrix are rigidly coupled. The problem of the scattering of  a 
longitudinal wave by a tunnel inclusion is considered as an example. © 1996 Elsevier Science Ltd. All fights reserved. 

1. We will consider an elastic uniform medium characterized by Lam6 parameters ~ and IX anda  density 
p, in which, assuming rigid contact, there is a foreign elastic inclusion which occupies the region {(xl, 
x2) • S, Ix3 [ < h/2}:, where S is its middle surface, bounded by a closed smooth contour 0S with outward 
normal n, h is the thickness, and xl, x2 and x3 are Cartesian coordinates. The material of the inclusion 
has the parameters ~0, ~ ,  P0- 

We will discuss the case when lao/~t, k0/~, >> 1, h ---> 0. Here lao/~t, ~9~ approach infinity as (h/a) -K, 
> 0, where a is the: characteristic dimension of the region S. Clearly, as h ---> 0 the equations of motion 

of the particles of the inclusion (Lam6's equations) reduce to the corresponding equations of  motion 
of an elastic plate. The type of  oscillations of the latter due to the action of a travelling elastic wave 
will be determined by the value of the parameter ~¢. Thus [1], when ~ > 3 the boundary elastic inclusion 
can be modelled by an absolutely rigid inclusion, and when 1¢ =. 1, 3 they follow the equations of  
longitudinal (symmetric) or transverse (flexural, antisymmetric) oscillations of an elastic plate, 
respectively. Then, naturally, the frequency band of the oscillations in governed by the condition krh 
< 1, where k.4 = to/ca is the wave number of the longitudinal bulk waves of the external medium (A = 
L) or the transverse bulk waves (A = T), and to is the angular frequency. 

Suppose D is a celtain closed doubly connected region in R 3, F = (El, F2, F3) is the density of volume 
forces acting in D, eU(u ) (i,j = 1, 2, 3) is the strain tensor, corresponding to the displacement vector 
u = (u 1, u2, u3), and 0D = So O {(x d, x2) • S, Ix 3 ] = h/2} is the boundary of the region D, where the 
external contour So with normal n ° is assumed to be free of forces. We will introduce the following 
functionals 

L ( v ) =  ~ (F/+Do)2ui)l)idx, d x  = d.xldx2dx 3 
D 

A ( u , v ) =  ] [2~eii(u)eg(v)+2~teij(u)eij(v)]dx, i , j=1 ,2 ,3  
D 

corresponding to the work done by the external inertial and internal forces along the virtual displace- 
ments v = (vl, a)2, "o3). In these formulae and henceforth summation is carried out over repeated 
subscripts, the Latin subscripts take values of 1, 2 and 3, while the Greek subscripts take values of  1 
and 2. 

Then, when ~ e  R+\{0}, ~.e R + LI {o0}, the vector of displacements ~t e 17~ for all ~ e V~ satisfies 
the relation J~ = 0 (~: = 1, 2, 3), apart from the displacement of the inclusion as a rigid whole. Here 

as  

JI := Jo - I [E*eaa(u)ef~l~(V)+ 2~ e~(u)e~(v)]dS + mo~ uiwidS 
s s 

p~h--->~, ~.0h---~, h--->0; V I = { v ~ H I ( D ) ;  9als~Hl(S)} 
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as 

J~ = Yo + mo~ u3"°3dS (1.1) 
$ 

p.0 h2--->~, koh2--->~, h-->0; V 2 = { v ~ H I ( D ) ;  DaIs=0} 

as 

I I J3 = J 0  - ~ ' s  [3.*u3,o~x103,1~l~ + 2"~u3.af(oa.al~ldS+ tool u3a)3dS 
S 

IXoh3--~, Xoh3--->~, h--*0; Va={veV2,  ~03EH2(S)} 

and 

~2 u 
J o = L ( ~ ) _ A ( u ,  lo), ~,.= (~,-2~+ 2~) ' dS = dXldX2' u'cxl~ =--'OxcLOxl~ m0 = P°t02h 

where the integrals over the surface S are evaluated atx  3 = 0 and/_/m is the Hilbert space of functions 
having derivative up to order m, summable with a square, on S. 

Expressions for the functionals (1.1) follow from the well-known results obtained in [1], if we take 
into account the inertial forces using d'Alembert 's principle. The conditions for the functionals J~; 
aJ~ = 0 0c = 1, 2, 3) to be stationary, using Green's formulae, which relate the integrals over a volume 
to the integrals over a surface and which convert integrals over the area of the middle surface S into 
integrals over the contour OS bounding it, can be written, respectively, in the form 

w0 +I I +,,,ol ,,,S,,,dS=O. ,, l 
S aS S 

5"1o +mo I u35"°3dS = O, w. = 2 
S 

~Io = I (°O,J +ptO2ui + Fi)8~Oi dx  - J ffqnj~'°i dA 
D ~D 

0"~ = k*ua,afa~ + 2geal ~, V 4 = V2V 2, V2u = U.otO t 

(1.2) 

where dA is an element of area of  the surface OD, dl is an element of the arc of  the positive direction 
of the contour 0S, o0 is the stress tensor corresponding to the tensor eij and 50 is the Kronecker 
delta. 

In view of the fact that the variations ~ 3 / 3 n ,  6a~i and the condition 6 # ° =  0 are arbitrary on So, 
from relations (1.2) when x e R3~S we obtain the equations of steady Lain6 oscillations, which, ignoring 
mass forces, we will write in the form 

(~,+l.t)ui.q +l.tui.ii +pto2uj = 0 (1.3) 

while when x ~ S we obtain the equations of motion for the thin-walled inclusion corresponding to the 
boundary conditions on its contour 

(I)13 = -EIh(A* + k 2 )u13, tl) 3 = -Elhk2u3 , X ~ S (1.4) 

o~nl~=0 ,  x~3S;  ~:=1 

u I = u  2=0 ,  0 3=-EIhk2u3,  x ~ S ;  r = 2  (1.5) 
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u l=u2=0 ,  ~3 = g(V4-k4)u3 ,  x ~.S 

V2u3+-~M, u3=O, M, u3=O, x ~ S ,  1¢=3 

(1.6) 

Here 

(o,,,? 
 ,po) 

kl= to ( f = l , b ) ,  
c/ ~i  = ~ - a ~ 3  (ff~ = lim (li3(Xl,X2,"l-h)) 

" h - - * 0  

M~ =u3,~ q-YoU3,22 , M 2 -u3.22 -i-you3.12 , Mr2 =(l-vo)u3j2 

M, u3 =(M2 - M , ) n , n  2 + M,2(n 2 -n~) ,  M,,u 3 = M,n 2 = M2n ~ + 2M,2n, n 2 

A*~ = ((1 + v 0 )ua, ~ + (1 - v 0 ) ~ , ~  ) / 2 

(E 1 is the modulus of elasticity for a thin plate, c 1 is the velocity of a longitudinal wave in the plate, Cb 
is the velocity of flexural waves in the plate, g is the cylindrical stiffness of the plate, ~i is the jump in 
the stresses, E0 and v0 are Young's modulus and Poisson's ratio of the material of the inclusion and x 
is the unit vector of the tangent to OS, obtained from n by rotation by +n/2). The boundary conditions 
of problems (1.4) and (1.6) are the conditions for the edge of the plate not to be fixed (free). 

Equations (1.5) and (1.6) were obtained ignoring effects due to transverse compression oscillations 
of the inclusion and are asymptotically correct if the frequency of the incident wave is not the same as 
the natural frequency of the homogeneous internal boundary-value problem, defined by relations (1.4). 
To investigate the situation when these two frequencies are the same and to obtain equations which 
combine the cases ~: = 1, 2, 3, we use the method of matched asymptotic expansions [2--4]. As a result 
we obtain the following relations 

dpfj=-Ejh (A*+kt2)ul3, x~S;  a~13n13=0, x ~ S  (1.7) 

~3--i~(V4-k4)u3 , X ES; ~ V2u3-I- ~-~_ M,u,=O, M.U3 =0, x ~3S (1.8) 
on o"[ 

which describe, as3nnptotically exactly, the interaction between the elastic medium and a thin plane 
inclusion of large stiffness when the surface of inhomogeneity and the matrix are rigidly coupled. (This 
assertion was proved previously by Ya. I. Kunts in an unpublished paper.) 

2. Suppose that an elastic wave, characterized by a displacement vector ui(x) (the time factor 
exp(-/~t) is assumed) is incident on the inclusion considered. Then, outside the surface of the obstacle, 
the field u(x) = u~(x) + u'(x) satisfies the equation of steady Lam6 oscillations (1.3), while in the region 
x e S it satisfies relations (1.7) and (1.8). The scattered field us(x) then satisfies the Sommerfeld radiation 
condition, from which it follows that 

u'~(x) - - - - ~ 1  ~ exp(ikAR)fA(o~,v) (R= lx l - ->~)  (2.1) 
4rtR A=L,T 

where f~(c0; v) is the vector amplitude of the scattering of longitudinal waves (A = L) and transverse 
waves (A = T), and u = x/R is the direction of observation. 

From Betti's reciprocity theorem for an infinite region [5], taking into account the condition u(x) = 
u(xl, x2) when Ix31 < h/2, we have 

uS(x)="-S dPi(Y)Gi(x,y)dy, (2.2) 
s 

I 32(gL--gr) 
GO = ~r s# pco z ~yi~Yj 

dy=dyldy2, x 3>0; G i=(Gli,G2i,G3i) 

exp(ikAI x - y [ ) (A = L, T) 
' g~ = 4~1 x - y l  
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We obtain the following expressions for the scattering amplitudes from (2.1) and (2.2) 

fa(tO, V) = _ l  aA j dpi(Y)exp[_ika(v,y)ldy 
Ix s 

a/L=~Zvvi, a / r = B i - v v i ,  8i=05.,82i,83i), ~=crlCL 

(2.3) 

Using the expansion of a spherical wave in plane waves, relation (2.2) can be written in the following 
form when x3 = 0 

.. ~2 
uf~(x,,x2 ) :  u~(x,,xz )-'~l~ kL! *v(Y)Kv~(kt l rl )dy 

U3(Xl ,X2)=U~(Xl ,X2)+ ki~ O3(y)K3(kLI r l ) dy  

+ l _ l  a..ao X~(Irl)=-~-2 J4~ R2 /~(a)ei(a 'r)d°t '  L~---~i~T3 ('/I T3) r "  

I J L3(et) el(' 'r)d°t, /-'3. =T, _l o t l  2 
K3(I r l )  =-4~n2 ~ T3 

x2-y2), de,=da da2, 

(2.4) 

where the branches of the radicals Ti (i = 1, 3) are defined by the condition Im Ti < 0 for I at I < 1 and 
1 I a I < g- ,  respectively. The kernel of the integral representations (2.4) Ka¢,/(3 are polar (weakly singular) 

and possess the asymptotic form const I r I- 'as I r I ~ 0. Note that when u(x) = 0 on S we obtain from 
(2.4) integral equations corresponding to the problem of the scattering of an elastic wave by an absolutely 
rigid inclusion. 

Hence, we arrive at systems of equations (1.7), (1.8) and (2.3), (2.4) which define the solution of the 
problem of the scattering of an elastic wave by a thin-walled elastic inclusion of large stiffness (i.e. 
provided that the wave impedance of the material of the inclusion is much larger than the wave 
impedance of the material of the medium). Uniform boundary-value problems (1.7) and (1.8) are self- 
conjugate (Hermitian), their eigenvalues are non-negative, and the eigenfunctions (they can be chosen 
to be real) are orthogonal and form a complete system in/-F(S). (These assertions follow from the fact 
that the operators defined by the right-hand sides of Eqs (1.7) and (1.8) are positive definite and also 
from the conditions on the contour bS.) 

Hence, the solution of problems (1.7) and (1.8) can be represented in the form of expansions in 
eigenfunctions and eigenvalues. Substitution of these expansions into (2.4) leads to integral equations 
with compact operators, acting from the space H°(S) into C(S), to determine the required jumps in the 
stresses ~i. For the latter we will use all the statements of Fredholm's theory, and the self-regulation 
methods holds for the numerical solution of the integral equations of the first kind obtained in this way 
[6]. However, it is difficult to construct the eigenfunctions and eigenvalues for an arbitrary region S, 
except for canonical regions (a section and a circle). 

On the other hand, assuming that the numbers ke and ko are not eigenvalues of the internal problems 
(1.7) and (1.8), the systems of equations considered can be reduced to corresponding integro-differential 
equations. In fact, substituting (2.4) into (1.7) and (1.8) we obtain 

O13(x~,x2)- Zk2(kF2A " + 1)J #av(y)K~c(kL[ r l)dy = -Ejh(A* +k2)u~(xl,x2) (2.5) 
S 

2 -2 4 
(D3(X I ,X 2)  -- Z k L ( k  b V - ! )  S ¢~3(y)K3(kL] r l ) d y  = 

s 

= g(V4-k'~)u~(xl,x2), (xt,x2)~S 

~13(y)dy - Zk2J J tO~(y)K~(kL I r l)dSdy = -moJ u~(y)dy 
S $S S 

(2.6) 

(2.7) 
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I ~3(y)dy-ZkL21I 03(Y)K.a(kLI r l )aSdyf -mo I u~(y)dy (2.8) 
S SS s 

Zk~MnS ¢P3(Y)K3(kLI rl )dy =-mbM~u~(xl,x2), (xj,x2) ~ ~S (2.9) 
S 

Z = kLhPo I (2p) 

Equations (2.7) and (2.8) are obtained by integrating the corresponding differential equations over 
S taking the condition on the contour 3S into account. 

3. Consider the case when the right-hand sides of Eqs (2.5) and (2.7) or (2.6), (2.8) and (2.9) are 
zero. Suppose ~(xl,  x2) (k = 1, 2 . . . . .  r) are linearly independent eigenfunctions of the differential 
operators or probllems (1.6) and (1.7), regular inside S. We will represent the general solution of the 
corresponding equations in the form 

u , ( x j , x 2 )  ffi j rl )dy, 
k=l S 

Fcm = g~ 8 1 ~z(g a - g d )  1 N0(kfl rl) 
= -p0co 2 ' g f : 

kf  - - - , ° '  = l +  = l -  
c I 2 2 

F:'i =-8~o [No(kb' r ' )+2  Ko(kh' r') ] 

(3.1) 

( f  = a, d) 

where c/k are arbitrary constants, the functions ¢~k are chosen to be real, and No and K0 are Neumarm 
and MacDonald fmtctions, respectively. Suppose, further, that the numbers kl and kb are the eigenvalues 
of boundary-value problems (1.7) or (1.8). Since these problems are elliptic boundary-value problems 
(it is easy to verify that the Shapiro-Lopatinskii condition holds for them), then for these to be solvable 
it is necessary and sufficient that [7] 

S ¢~k(Y)~j(y)dy =0,  k = 1 ..... r (3.2) 
S 

Note that when S is a section, problem (1.7) is the Sturm-Liouville problem and, consequently, 
r = 1, while for problem (1.8), r = 2. 

Then, instead of the integro-differential equation (2.5) or (2.6) we obtain from (2.4) and (3.1) 
corresponding integral equations of the first kind of the Fredholm type 

MO(I r l ) ~ i ( y ) d y +  ~. _ i cik~,(xl,x2)- ui(xl,x2), (xj,x2) e S 
S k=l 

M~=Fl~(lrl)+'~--~kl.K~c(kLIrl), Mj.~=Fi3(Irl)-Si3 ktK.a(kLIrl) 

where the required functions Oi satisfy conditions (3.2). 

4. A s  an example we will consider the case when S = (Ix1 [ < a,  Ix2 [ < oo} and the incident wave is represented 
in the form u~(x) = ! exp[ikL(l, x)], I = (sin 00, 0, --cos 00) (here and henceforth we consider waves with vertical 
polarization: u2(x) = 0). We have a plane problem, where no quantities that characterize the wave depend on the 
coordinate x2. The solutions of boundary-value problems (1.7) and (1.8) in this case have the form 

Ul~(t)=- ~l x j ~(u)g~(u,t: x~l)6~du, y,13=1,3 (4.1) 4-- n0 
gl (u,t; x) = :2{cos[x(2-I t -  u I )] + cos[xl t + u I 1} / sin 2x 

g3 (u.t; x) = sinlxl t - u ] ) + exp[xl t - u I ) + Yi ch(xt) + f2 sh(xt) + f3 cos(xt) + f4 sin(xt) 
Ji = {cos(xu) + e-Xch(xu)d~ (x)} / d~ (x)  
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f2 = Isin(xu) + e -x sh(xu)d~ (x)) I d~ (x) 

f3 = (ch(xu) + cos(xu)d 3 (x)} / d~" (x) 

f4 = {sh(xu)- sin(xu)d 3 (x)} / d~" (x) 

d~(x)=chxsinx+shxcosx, df=cosx+sinx 

d3(x) = chxcosx-shxsinx 

x=kLa, ~l=CllCL, ~3=cblcL, t=x l /a  

Note that when sin(2xgi 1) = 0 or d~(x~.ff)di(x~ 1) = 0 solutions corresponding to (3.1) and (3.2) in the two- 
dimensional case follow from (4.1). Substituting (4.1) into (2.4) and integrating with respect toy2 first, we obtain 
integral equations of the first kind with a logarithmic singularity in the kernels 

I 
xZ j Ol~(u)M~(u,t)5~du=_lf~ exp(itol~t), I t l<l  
t?i0 - I  

nfl(u,t) = Kl~(xl t -ul)+ Z-I~J gfj(u,t; x ~  I ) 

K,(z)=--~[H o (z)+q(z)] ,  q(z )=~H:" ( t ] -H ," ( z )  

K _ i F . . : . . . [ ± l _ q c z ) l .  
" (z)- -7[~"  t,~) z J ~-~-[ 

where/-/(~ are cylindrical Hankel functions. Here, when R0 = (~  + ~)1~ ~ oo the scattered field uS(x) has the 
asymptotic representation 

uS(x) = ~ (8r~k/tRo) - ~  exp(ik/tR o +ix/4)fA(¢o;i,~,) (4.2) 
A=L,T 

1 
f A ( t o ; l ' t ' ) = - ~ a ~  I O[l(u)exp(-ikAavlu)du, 1~=1,3, A=L,T 

- I  

We will choose as the scattering characteristics the total transverse scattering cross-section, defined in the 
1 L T directions 00 = 0, ~2  by the equation o(00) =kL- Im(l, f (0~: I, i)), (I, a ~) = 0, and the polar scattering characteristic 

in the locational direction F(00) ffi IfA( o~: i, --I) I- The solution of the system of integral equations (4.2) was 
constructed numerically by the method of mechanical quadratures [6]. The results obtained were compared with 
the results by solving integro-differential equations (2.5)-(2.9) by the same method, written for the section, and 
were confirmed by them. Here the external medium was characterized by the equilibrium parameters of vinyl plastic: 

5 3 --4 3 
E = 0 .03  x 10- MPa, v = 0.354 and p = 1.3 t/m or plexiglass: E = 0.525 x 10 MPa, v = 0.35 and p = 1.18 t /m,  
while the inclusion was characterized by the parameters of steel: E0 = 19 x 10 -4 MPa, v = 0.3 and p = 8 t/m 3. The 
thickness of the inclusion was taken to be 0.09a. Note that a steel inclusion in vinyl plastic corresponds to a value 
of ic = 3 while in plexiglass it corresponds to ic = 1. 

In Fig. 1 we show curves of o* = o(00)/(2a) as a function of the wave parameter x. Curves 1 and 2 correspond 
to an absolutely rigid inclusion (Z = oo) while curves 3 and 4 correspond to an elastic inclusion, situated in vinyl 
plastic, with 00 -- 0 and 00 -- g/2, respectively. It follows from curves 2 and 4 in the figure that when x > 1 the 
inclusion behaves as an absolutely rigid body, i.e. effects related to its longitudinal oscillations are negligibly small. 
These effects are important o ~  in the Rayleigh region, where the oscillation frequencies are close to the natural 
frequency kt -- 0, i.e. k9 < x (9-1 = 0.038). At the same time, it follows from curves 1 and 3 that o(0) when x > 1 
is fairly accurately determined by its Kirchhoff approximation 4aZe/(1 + ze). 

In Fig. 2 we show graphs off* -- F(00)/2 for vinyl plastic (a) and plexiglass Co) forx = 10. Curves 1 correspond 
to longitudinalwaves (A + L) and curves 2 correspond to transverse waves (A = T). We know [8], that for inclined 
incidence of a sound wave on an elastic plate situated in a liquid, over a range of certain angles intense reflection 
is observed in a direction opposite to the direction of the incident wave (so-called non-specular reflection, due to 
flexural and longitudinal waves in the plate). The non-specular reflection of longitudinal waves, due to flexural 
waves of a thin-walled inclusion, can be clearly seen in Fig. 2(a) in the angular range 0. ~ 23 ° (sin 0. -=" g~l = 
0.383). Non-specular reflection of longitudinal waves, due to longitudinal waves in the inclusion (Fig. 2b), are less 
pronounced and occur in the range 0. - 30 ° (sin 0. ~ ~i l = 0.523). These resonances are fairly wide here unlike 
the resonances that occur in the oscillations of elastic plates in a liquid. 
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